2-methoxyestradiol inhibits the anaphase-promoting complex and protein translation in human breast cancer cells.
نویسندگان
چکیده
2-methoxyestradiol (2ME2), an estradiol metabolite with antiproliferative and antiangiogenic activities, is in phase I/II clinical trials for breast cancer. 2ME2 inhibits microtubule polymerization and causes cells to arrest in G2-M. The purpose of this study was to further elucidate the molecular mechanism of 2ME2. MDA-MB-435 breast cancer cells were treated with 2ME2 (2 micromol/L) or vehicle alone. RNA was extracted and genomic profiling was done using 22k Agilent microarrays. Expression Analysis Systematic Explorer was used to determine enrichment of Gene Ontology categories. Protein isolates were subjected to Western blot analysis. Protein synthesis was measured with a [35S]methionine pulse assay. An MDA-MB-435 cell line with two beta-tubulin mutations (2ME2R) was used to determine whether novel mechanisms were tubulin-dependent. Gene Ontology categories enriched include genes that regulate the mitotic spindle assembly checkpoint, apoptosis, and the cytosolic ribosome. The target of the mitotic spindle assembly checkpoint is the anaphase-promoting complex (APC). APC inhibition was confirmed by measuring protein levels of its targets securin and cyclin B1, which were increased in 2ME2-treated cells. Because gene expression in the cytosolic ribosome category was decreased, we evaluated whether 2ME2 decreases protein translation. This was confirmed with a pulse assay, which showed decreased isotope incorporation in 2ME2-treated cells, which was maintained in the tubulin-resistant 2ME2R cells. APC inhibition was not maintained in 2ME2R cells. 2ME2 induces tubulin-dependent cell cycle arrest through regulation of genes involved in the mitotic spindle assembly checkpoint, which results in inhibition of the APC and tubulin-independent inhibition of protein translation.
منابع مشابه
Complex and Protein Translation in Human Breast Cancer 2-Methoxyestradiol Inhibits the Anaphase-Promoting
2-Methoxyestradiol (2ME2), an estradiol metabolite with antiproliferative and antiangiogenic activities, is in phase I/ II clinical trials for breast cancer. 2ME2 inhibits microtubule polymerization and causes cells to arrest in G2-M. The purpose of this study was to further elucidate the molecular mechanism of 2ME2. MDA-MB-435 breast cancer cells were treated with 2ME2 (2 Mmol/L) or vehicle al...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملRunx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells
Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carc...
متن کاملCombination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells
Objective(s): Breast cancer remains a global challenge, and further chemopreventive therapies are still immediately required. Emerging evidence has revealed the potent anti-cancer effects of biguanides, Metformin (MET) and phenformin (PHE). Thus, to explore an efficient chemopreventive strategy for breast cancer, the antiproliferative effects of the combination of MET and PHE against breast can...
متن کاملSilencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro
Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells. Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2007